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Lagrange mesh, relativistic flux tube, and rotating string
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The Lagrange mesh method is a very accurate and simple procedure to compute eigenvalues and eigenfunc-
tions of nonrelativistic and semirelativistic Hamiltonians. We show here that it can be used successfully to
solve the equations of both the relativistic flux tube model and the rotating string model, in the symmetric case.
Verifications of the convergence of the method are given.
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I. INTRODUCTION The Lagrange mesh method is explained in Sec. Il. In

) _ Sec. lll, the relativistic flux tube and the rotating string mod-
The Lagrange mesh method is a very accurate and simplgs are described. Then, it is shown, in Sec. IV, how the

procedure to compute eigenvalues and eigenfunctions of ga4range mesh method can be applied to solve the equations
two-body Schrédinger equatidi—3]. The trial eigenstates of motion of these models. After some remarks, given in Sec.
are developed in a basis of well-chosen functions, th&; anout the numerical and physical parameters, the results
Lagrange functions, and the Hamiltonian matrix elements argre presented in Sec. VI and the reliability of our numerical

obtained with a Gauss quadrature. This method can be epethod is checked. Finally, some concluding remarks are
tended to treat very accurately three-body problems, iYyiven in Sec. VII.

nuclear or atomic physidgt]. Recently, it has also been suc-
cessfully applied to a two-body spinless Salpeter equation Il. LAGRANGE MESH METHOD
[5]. The idea of this work is to adapt the Lagrange mesh

method to solve the complicated equations of both the relaét

tivistic flux tube and the rotating string models. tions f,(x) [1-3]. A Lagrange functiorf;(x) vanishes at all

The relatl_V|_st|c flux tube(RFT) IS a phenomenolog_lcal mesh points but one; it satisfies the Lagrange conditions
model describing the mesons. It relies on the assumption that

the quark and the antiquark are connected by a straight color fi(x) = )\{1/26”-. (1)
flux tube carrying both energy and momentum. The quark
are considered as spinless patrticles in the original version 9
the model[6—8|. The RFT reproduces the linear Regge tra-
jectories, and reduces to the usual Schrédinger equation with f

A Lagrange mesh is formed dd mesh pointst; associ-
ed with an orthonormal set of indefinitely derivable func-

he mesh pointg;, the zeros of a particular polynomial, and
e \; are connected with a Gauss quadrature formula
b N
gOdx= > \g(Xo), 2
k=1

a

a linear confinement potential in the nonrelativistic limit. We
will consider here the particular case of mesons composed of
two equal quark masses. The equations of motion of thgised to compute all the integrals over the intefiegb].
symmetric RFT model are given by two coupled nonlinear - as we consider only radial equations, this interval is
equations: one defining the Hamiltonian and the other definfoyoo[, leading to a Gauss-Laguerre quadrature. The Gauss
ing the orbital angular momentum. These equations depengmuia (2) is exact wheng(x) is a polynomial of degree

on a quark transverse velocity operator and their solution§N_1 at most, multiplied by expx). The Lagrange-

will be obtained by th_e use of an iterative procedure similarl_aguerre mesh'is then based on the zeros of the Laguerre
to the one proposed in ReB]. polynomial Ly(x) of degreeN [1]. An explicit form can be

The rotating string modd€RYS) also describes the mesons. d . } )
It is derived from the QCD Lagrangian and is characterizecﬁg::;/ed for the corresponding regularized Lagrange func

by the fact that it contains auxiliary field8-11]. The equa-
tions of motion for this model are similar to the equations of fix) = (- 1)ixi'1’2x(x— xi)‘lLN(x)e‘X’z. (3)
motion of the RFT model. In the symmetric case, it has been To show how th | N b lied t hvsical
showed that the RS is classically equivalent to the RFT if the 0 sShow how hese elements can be apE 1€ azo a pnysica
auxiliary fields are correctly eliminatgd 2]. This result, ex- problem,»zlet. us co.nsmller a HamlltonlaIH—T(p )+V(r).,
tended recently to the asymmetric c&$8], provides a clear WNereT(p°) is the kinetic term and/(r) a radial potential
physical interpretation for the characteristic variables of the#=C=1). The calculations are performed with trial stajigs

RS model. given by

N
) =2 Cdfw, (4)

*Email address: fabien.buisseret@umh.ac.be k=1
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RV 11 (71 NN ! . —
<r |fk> - WYfm(r) (5) ng [T” + V(hx‘)ﬁu - E§IJ]CJ =0 with CJ = \//h)\ju(hXj),
¢ is the orbital angular momentum quantum number and the (12

coefficientsCy are linear variational parameters.is the whereu(r) is the regularized radial wave function. The co-

scale parameter chosen to adjust the mesh to the domain of. ientsC de th | fthe radial functi ¢
physical interest. We define=hx, with x a dimensionless elficientst; provide the values of the radial wave function a

variable mesh points. But contrary to some other mesh methods, the
We have now to compute the Hamiltonian matrix ele-Wave function is also known everywhere thanks to &

ments. Using the properties of the Lagrange functions and
the Gauss quadratu(@), the potential matrix is diagonal. Its Il. THE MODELS
elements are

A. The relativistic flux tube

(HIVOIT;) = V) 5, © In the original RET model6], the meson is composed by
and only involve the value of the potential at the meshtwo spinless particles—a quark and an antiquark—which
points. As the matrix elements are computed only approxifnove being attached with a flux tube. This tube is assumed
mately, the variational character of the method cannot béo be linear with a uniform constant energy densityand
guaranteed. But the accuracy of the method is preservetarries angular momentum. A tube element has only a trans-

[14]. verse velocity. The system rotates in a plane around the cen-
The kinetic energy operator is only a function @t Let  ter of mass, assumed to be stationaryr;Ifs the distance
us define the corresponding matrix, between theith quark and the center of mass, and if we
5 . definer;=dr;/dt the radial velocity of theéth quark, then the
P = (fi|p7f)). (7)  quark speed is given by?=r2+v? , wherev;, is its trans-

verse velocity. We also assume that the energy density of the
extremities of the flux tube is modified by a negative con-
stantC/2, in order to take into account possible boundary

1 0 +1) effects due to the contact between the tube and the quark.
; ( 2 5.;), ®)

It is shown in Ref[3] that, using the Gauss quadrature and
the properties of the Lagrange functions, one obtains

P; :F Further, we consider that the quarks can interact g
taking into account a short-range potent{al one-gluon-
where exchange process, for instanc&hese two extra terms are
discussed in Ref[8]. The Lagrangianl of the meson is
- {(— D00 A+ )0 =x)? (#D), o given by
O la2) A+ @N+ 2% =X (=), L=Lq+Ly= VD), (13)

Now the kinetic energy matriX(P?) can be computed with
the following method5]

(1) Diagonalization of the matri¥?. If D? is the corre-
sponding diagonal matrix, we have

4
rij 2
X

.
- b - C _
ﬁi:‘mi%l‘af d"i?’ul‘z%fa (14
0

where m; is the constituent mass of théh quark, y=(1
P?=SDS™, (10 —vY)M2andy, =(1-07) 2
. . . In the following, we will only consider the symmetric
whereSis the transformation matrix. case,my=m,=m. Then r,=r,, and r=2r,, and vy, =v,,

; ) . .
(2) Computation off (D7) by taking the functiorlT of all  ~ ' "¢ corresponding quantized equations of the system

diagonal elements db?. are[6,8]
(3) Determination of the matrix elementsT; '
=(f;| T(P?|f.) in the Lagrange basis by using the transfor- 2V€(€ +1)
mation matrixs  C fory Wik +alr flo )b +Coyy,, (19
T(P?) =STD?)S™. (1D a) arcsinu
— o St N
This procedure can easily be generalized to the case of an H={y, Wi+ 2 K v, +Cyavln, (19

arbitrary functionF of any given matrixM, in order to com- ) )

pute F(M) (provided the calculation is relevaniNote that ~Where< is the orbital angular momentunfi, B} =AB+BA,
such a calculation is not exact because the number ob<f(x)=arcsink—xy1-x% W,=p?+n¥, and

Lagrange functions is finite. However, it has already given 2 (Pl

good results in the semirelativistic case, wheFép?) Pr (i) Horr.

=\Vp2+m? [5]. The operatop , commutes neither with nor with p, opera-
The eigenvalue equation reduces to a systerhl ofiesh  tors[6]. These equations reduce to a spinless Salpeter equa-
equations tion with the potentialar+V(r)+C when €=0, and to a
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Schrddinger equation with the same potential in the nonrel- pr2+ m? ar ) 5
ativistic limit. The general cas@n, # m,) is detailed in Ref. H= " tut Varcsmy+ my-+V(r). (22
[7].

It has been shown in Ref12] that the extremal value of
B. The rotating string w giving 8H/5u=0 is

Starting from the QCD Lagrangian and writing the gauge 3 pr2 +m?
invariantqg Green function for confined spinless quarks in Ho=\ 1-y2° (23)
the Feynman-Schwinger representation, one can arrive at the
Nambu-Goto Lagrangian, which describes two quarks witlMoreover, the replacement @f by o in Eqgs.(21) and(22)
massesn, andm,, attached by a string of energy density ~ 9ives exactly the symmetrical RFT equatidii$) and (16),
With the straight line ansatz and the introduction of auxiliaryWith y equal tov . The RS model with all its auxiliary fields
fields u;, 4y, and v (einbein fields to get rid of the square eliminated is thus equivalent to the RFT model in the classi-
roots appearing in this Lagrangian, one can obtain th&al symmetrical case. This is also true whiem # my), as

Hamiltonian[11] shown in Ref[13].
Here, we use the RS model with the auxiliary figlchot
_ 1| pE+mE pr+md ,o[tdB eliminated, as in Ref§9-11]. In these papers, the parameter
H=2 + Tt uprart| - w is considered as a real parameter and not as an operator.
2 M1 M2 o ¥V - . e .
But, to avoid eventual singularities in the value of this aux-
! L2 iliary field wheny is classically close to 1, we introduce
+ . dBv+ agr? +VI(r), (17) explicitly the dependence qf in y, through the following
substitution
where p
— —, (24)
M \’11 _ y2

1
az=uy(1 ‘§)Z+M2§2+f dB(B-¢)v. (18) _ S
0 wherep is a real number. Such an expression is inspired by

_ ) ) _ ) the result(23). Asy is of the same nature as_in the RFT
The potentialV(r) takes into account interactions not simu- podel, Egs.(21) and (22) must be correctly symmetrized,

lated by the rotating string. We do not consider here a conang the quantized equations of the symmetrical rotating
tribution coming from a constant potenti@l as in the RFT  gtring are thus

model.L=€(¢+1) and{ defines the positioR,, of the cen-

ter of massR, ={x;,+(1-{)X,,, wherex; , is the coordinate Vee+y _y N §{r fy)} (25)
of the ith quark, depending on the common proper time r p\u’l—yZ PARAE

The string, with coordinatev,,, is described by two param-

eters on its worldsheet: one timelikeand one spacelikg. 1 1+y? a| arcsiny
Within the straight line ansatz, the string coordinate is given H=_—{p/ + m?,\1 -y} +p-—=+ 1T,

by w,, =B xy,+(1-pB)Xy,. The auxiliary fieldsu; and u, can 2p Vi-y* 2 y

be seen as effective masses of the quarks, while the auxiliary +V(r), (26)
field v can be interpreted as an effective energy density for . —
the string[9,11,13. where 42f(x)=arcsinx—x\1-x? like for the RFT model.

We are interested here in the resolution of the symmetrical A particular solution depends on the value of this param-
case. Whemm,=m,=m, then¢=1/2 andu,=pu,=u. Defin-  €terp. Following Refs[9,11], the physical value o mini-

ing mizes the mass of the state. The mean vale
=(pl/ v‘ryz> can be considered as a constituent mass for the
y= L (19) quark, depending on the state. These equations reduce to a
2agr’ Schrodinger-like equation with the potentil+V(r) when

o o o _ €£=07[12], and to a true Schrodinger equation with the same
one can eliminate by a variation of the Hamiltonian. This otential in the nonrelativistic limit.

extremal fieldy, reads

ar (20) IV. RESOLUTION

T - ap(p- 1127
A. The relativistic flux tube

By replacingw by v, in the Hamiltonian(17) and the relation  The main purpose of our work is the resolution of the
(19),.we optaln the following equations for the symmetrical symmetrical flux tube equationél5) and (16) using the
rotating string[11] Lagrange mesh method. To do this, we have to compute the

— matrix elements of the different operators in the Lagrange

W +1)  uy N 1 (arcsiny — yVI —y2 basis. As we consider a radial problem, we will use a Gauss-
2 - 2 y y\’ y )l (21) .

ar ar 4y Laguerre quadrature. So, the corresponding Lagrange func-
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tions will be given by Eq.(3). Let us define the different Once we have reached the convergenceédowe are able

matrix elements we need to know to computeS andI’, which are now seen as functions of the
— matrix G rather than the matrix elements of the operator
A= <fi 206 +1 f1>' = (fr|f), The Hamiltonian can then be computed and diagonalized.
Actually, the final matrixG is practically independent of

the initial oneG°. However, the faster way to reach the con-
Dj = <fi|Wr|f,->, vergence is to develop EL5) at the first order i, and to
choose the matrixz given by this development. At the first
Fij= <fi

1 —_—
arcsin,  V1-0v? order,v, vy, =~v,, and

fj>a Gij = <fi|UL7L|fj>a

47 4v ap? C \!
= + Gox\’f(g"'l)( —{B, D}+?+ 21) (34)
arcsinu |
S = <fi » fj>’ Ty = (Gl v, Let us note that a relevant starting matrix is obtained even if
* m=0.
Vi =<6V, (27)
With these notations, Eqé15) and (16) read B. Rotating string
A={G,D} + a{B,F} + CG, (29) 1. Lagrange mesh method
The resolution of the RS with the Lagrange mesh method
_ a is similar to that of the RFT. Indeed, using the previous defi-
H={I'D}+ 2{8’8} *Cr+V, (29) nitions (27) with y instead ofv |, and defining
h h h i I lati — 1+y?
where we have used the approximate closure relation, <f~|\e'1—y2|f> vo=( 1| y2 i),
N \1 — y
> [fiXfl =1, (30)
k=1

E; = (filp? + n7lf)), (35)
to compute a product of two matrices. :
The matrix elementgy;, B;, andV;; are easy to compute, Egs.(25) and(26) and are given by
thanks to Eq.(6). Moreover Eq.(9) gives us an analytical _
expression forprzij, from which we can deduce the matrix G= 2—p(A—a{B, FD, (36)
element;; by using the procedure described in Sec. Il. The

same procedure will allow us to compug, G;;, §; andT;

once the matrix elements of_ are known. The determina- H= i{E,Q} +pY + il{B,S} +V. (37
tion of these matrix elements can be achieved by an iterative 2p 2
process, described here _ Like for the RFT, we need to compute the matrix of the
(1) Equation(28) can be rewritten as operatory to completely know the Hamiltonian. We will do
» , o1, this by an iterative process da given directly by Eq.(36),
G= E{P’D } - E{G’D }- EDGD -5D GD, with an initial value, obtained after a first order development,
given by
(31) -1
— a
where GP= e (¢ + 1)<pB + EBZ> . (38
P=A-a{B,F}. (32

The last step in the resolution of the RS equations is always
This equation is symmetrized to ensure tais Hermitian.  to find the value of the real numbgrrealizing the minimum
It is worth noting thatP=P(G) sinceF=F(G). Starting from  mass of a particular state. This extremal value is different for
an known matrixG¥ at thekth step,P* can be computed and each state.
we obtain a new matrixz’* with Eq. (31).
(2) This iterative process would diverge if we choose

G1=G’k So, we introduce a new parameter 1 and de-
fine GK'1=€eG'k+(1-¢€)GK. Contrary to the case of the RFT, the opergiprappears

(3) At each stefk, theN eigenvaluesév(f?} of the operator only in the equation defining the Hamiltonian for the RS.
i} ] . . .

v, are computed. The iteration procedure ends when This makes possible a solution of E¢85) and (26) and by

a WKB method. Partial solutions of the RFT equations

2. WKB method

N |ty - v -ull within this method are described in R15).
_E k+1 <1 (33 First, let us examine the cage=0. The RS equations
reduce then to a spinless Salpeter equation of the fgrm
where 7 is a fixed tolerance. =u sincey=0)
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52 +m? TABLE I. Two sets of physical parameters for the RFT and the
H= B +p+ar+V(r), (39 RS models, from Ref.8] (n=u or d).
where la Ic
2
}32 _ p2 . L_ (40 m, (GeV) 0 0.233
o2 ms (GeV) 0.317 0.416
m. (GeV) 1.456 1.658
- 2_
In the WKB metr_\od, L=¢+1/2. ConsequentlyL<=1/4 a (GeV?) 0.151 0.169
here, and we obtain
C (GeV) 0 -2m,
1 1.016 0.539
2 _ 2 Ki
=pM - p? = m? - par - — - pV(r), 41
Pr=pM=p par=;5 = PVID) @y 0.698 0.467
Khh 0.544 0.500

whereM is the meson mass. We have then to computnd
r_the two physical zeros of the classical quanfify Finally,
the resolution of the Bohr-Sommerfeld condition

B. The scale parameter

F+ N The Lagrange mesh method provides us a direct picture of

f prdr=m(n+3), (42 the wave function at the mesh points. The best results are

- thus obtained when the mesh covers the main part of the

followed by a minimization oM with respect to the param- wave function and the last mesh point is located in the
eter p gives the mass of the state whose quantum number@symptotic tail. That is why we are interested in an adequate

aref andn. determination of the scale parameterSince the method is
When ¢ # 0, the WKB formulation of the classical RS not variational, no extremum of the mass can be expected for

equationg(21) and(22), with the substitutior(24), reads a defined value oh [5]. A good value for this quantity is

N given by h=r,/xy, wherexy is Nth zero of the Laguerre

fj ' polynomial (the last point of the meghandr, represents a

2

ar>  an1 -y distance for which the asymptotic tail of the wave function is

well defined. Ifxy is well known,r, is not. We show here

1 _ —
+ 4—yz(arcsmy -yWl-vy?), (43

1 1+y%  ar how such a quantity can be estimated.
M==(p2+m V1 -y’ +p = + —arcsiny + V(r). A typical evolution of the computed masses for different
p vi-y® Y values ofh is presented in Fig. 1. The existence of plateaus

(44) shows that the method does not require the knowledge of
) o ] ) _ precise values of the scale parameter. A simple estimation

The first one implicitly defines a functioy=Y(r,€.,p),  will be sufficient, even to obtain accurate results.
which can be numerically computed. We can then formally  For given quantum numbers, a system of two massless

write quarks is expected to have the maximal spatial extension,
ar Hied l +~2 T T T T T v T T T v T

pe= ,p—,vz(M -V(r) - :arcsmy) - p? Zz -, sk T a i
V1-y y 1-y i sl
(45) Y —e—1p| ]
ol ——s| |
The rest of the resolution is now identical to the previous | . |
case(=0. 15| .
; [ A AE A A ]
8 14 | : N
V. SET OF PARAMETERS é 13t . .

. 0.9 : -
A. Physical parameters L
osf N\

In this paper, we are mainly interested in the capacity of
our method to give accurate solutions of the coupled equa: [ h=021 ]
tions for both RFT and RS models. But, in order to compare 06 | / .
our results with previous studies and to use our method with o oz or s o 1o
physical parameters in interesting ranges, we will use the
values of physical quantities from the models la and Ic de-
veloped in Ref.[8] (see Table )l Both models possess a |G, 1. Typical evolution of meson masses for the RFT model
Coulomb term with three values of the strength, dependingyith the scale parametér. 1S, 1P, and 2 states for the isospin 1
on the quark content of the mesox, for heavy-light sys-  mesons, computed with the parameters la from R&¥f. Formula

tem, xy, for heavy-heavy system, ang for light-light sys-  (53) givesh=0.21 GeV?! for the 1S state; this value is correctly
tem (light quark: u,d,s; heavy quarkc,b). located in the plateau.

07 |- : -

h(Gev™)
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and so it could give an upper bound of the paramieté&iirst, TABLE II. Approximate optimal values for the parametein
we analyze the problem for the RS equations wifer0.  different cases.
These equations reduce then to a spinless Salpeter Hamit

tonian, which reads a €
i~ m/va RFT RS
p
Ha=" rprar. 46 -o 0.005 0.1
=1 0.01 0.1

We fix V(r)=0, since the asymptotic behavior is controlled
by the confinement. The solutions have the following ana-

lytical forms (n=0,1, ...) [12] If the value of the mixing parametegsis too high, the
a2\ 13 iterative process diverges. The best valuesa$ chosen as

Eolp) = (—) (=sy) +p, (47) the largest value for which the process converges. It depends

p on the case considered, as shown in Table Il. It clearly ap-

pears that the iterative process does not converge easily with

Ai((pa)'r +5s,) the RFT equations, especially when the quarks are massless.

INHES] Abogt 700 iterations are needed in this case, and 400 when
m/+a=1. However, the RS solutions converge faster, and

where Als) is the Airy function and, its nth zero, given by one can reach the convergence after about only 40 iterations.
the approximate formulfl6]

Uno(F) = (p2) " , (48)

2 4 A. Relativistic flux tube
Replacingp by its extremal valugy, The Lagrange mesh method is not variational. But, in
-5\ practice for a sufficiently high number of basis states, the
Pro = \r’a(?> , (50) method is often variationaleigenvalues computed are all

upper boundsor antivariational(eigenvalues computed are
we have all lower bounds[5].
We have computed with the Lagrange mesh method the
o aif a -5, 1/4r . (51) solutions of the RFT equations for models la and Ic from
no Va3 *n)- Ref.[8] (see Table )l All the masses are computed wilth
o ) . =30, #=1075, the scale parametdr is estimated thanks to
Whens=5, Ai(s) is about 0.02% of its maximal value. Con- Eq. (53), and the parametaris taken from Table II. Meson

sequently, a good estimation of is given by masses are presented in Table Ill with the corresponding
_e \ /4 ones computed with the method developed in R&f. rely-
\r’a<—> ra+s,=5. (52) ing on a harmonic oscillator basis. Experimental data are

given in order to show that the parameters used are physi-

At this point, we are able to compute a “physical” value cally relevant. _
for h when £=0. The extension of the wave function in-  The results of both methods are compatible. Nevertheless,

creases with the angular momentum. The simplest way t§1€ masses computed with the Lagrange mesh method are
simulate such an increase is to compugavith the relation  @ways smaller than the masses computed with the harmonic
oscillator method, although the Lagrange mesh method is not

5( - 3n+(>l/4r + _5 (53) variational. We obtain similar results when both methods are

‘ 3 a® S =9 used to solve ordinary Schroédinger and spinless Salpeter

) o ) . . equations. We have thus strong confidence in our new
This crude estimation di is satisfactory because it is always method to provide a better convergence of the results. The
located in the plateau. Moreover, we will use it m_both RFTimprovement is especially important for light quark masses.
and RS methods, because of the classical equivalence bgyferences between the two methods vanish when the quark
tween these two theories. mass increases.

It is worth noting that the masses computed with method
of Ref.[8] are strongly dependent of the values chosen for
the oscillator length. So a supplementary minimization on

The accuracy of the solutions depends mainly on two pathis parameter, for each state, is necessary to obtain the op-
rameters: the numbédt of mesh pointgbasis statésand the timal value of a mass. This is not necessary with the
value of the tolerance; on the eigenvalues of the operator Lagrange mesh method since it is nearly independent of the
v,. For instance, a relative error on meson masses arourgtale parametesee Fig. 1

C. Numerical parameters

10°° can be reached witN=30 and»<10°. The accuracy The small differences between the masses obtained with
can be increased by using greater valuedNadnd smaller the Lagrange mesh method and the harmonic oscillator
values of7. method are a strong indication that our method works well.
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TABLE Ill. Meson masses for the RFT model, with two sets la and Ic of parameters from &ef.
computed using the Lagrange mesh metticat).) and a previous technique relying on an harmonic oscillator
basis(HO) [8]. The experimental massé&xpt) are given, without error, for information.

Mass(Gev)
(n+1)25H1 Expt. HO (la) Lag(la) HO (Ic) Lag. (Ic)
nn 135, 0.771 0.781 0.762 0.774 0.773
135, 1.318 1.310 1.300 1.320 1.319
1°D, 1.691 1.654 1.643 1.689 1.676
23g, 1.465 1.450 1.415 1.427 1.424
23p, 1.810 1.841 1.832 1.797 1.794
ss 135, 1.019 0.988 0.968 1.010 1.010
18P, 1.525 1.540 1.534 1.517 1.515
1°D, 1.854 1.881 1.877 1.867 1.865
23g, 1.680 1.671 1.641 1.644 1.641
23p, 2.011 2.053 2.047 1.994 1.991
cc 133, 3.097 3.131 3.130 3.116 3.115
13P, 3.556 3.528 3.527 3.542 3.542
1°D,4 3.770 3.788 3.788 3.820 3.820
235, 3.686 3.666 3.663 3.664 3.661
2°D, 4.159 4.128 4.128 4.165 4.164

But we want another test. It will be given by the study of theminimal mass for a particular valyg of the parametep in
RS model. the RS equations. In our calculatiopg,has been determined
to the nearest 10 MeV, and is the same in the two methods
B. Rotating string with that precision. An accuracy below 1 MeV is then

Solutions of the RS equations computed with thereached for the masses.

Lagrange mesh methothumerical parameters as in Sec.
VI A) and the WKB approximation are presented in Table
IV. The masses are obtained using the set la of parameters If the RS model is classically equivalent to the RFT
(see Table), for a pure string without Coulomb-like poten- model once the auxiliary fields are correctly eliminated, the
tial. two models should not give the same results when a real

The two methods to solve the RS equations lead to verparametep is kept in the RS equations. In a previous study
close results. This shows that the semiclassical approxima-

C. Comparison between RFT and RS

tion is efficient in this case, but also that the Lagrange mest
method works correctly. Figure 2 shows the existence of a 26|
TABLE IV. Meson masses for the RS model computed with the M
Lagrange mesh method and the WKB approximation. The interac-_
tion la from Ref.[8] is used, but without the Coulomb potential. > 2 [
The extremal valugy, to the nearest 10 MeV, of the parametes &B/
given in both cases. g 20r
=
Lagrange mesh WKB 18 1
Mass Po Mass Po 16 |
(GeVv) (GeV) (GeVv) (GeV)
nn 1%, 1.289 0.32 1.294 0.32 H o‘lo o.lz o,l4 o.ls o.ls 1.lo 1?2
13p, 1.581 0.16 1.589 0.16 P (GeV
235, 1.960 0.49 1.963 0.49 (GeV)
cc 133, 3.492 1.55 3.493 1.55 FIG. 2. Meson masses for the RS model, computed with the
13P, 3.731 1.52 3.730 1.51 Lagrange mesh method, versus the parametetS, 1P, and D
235, 3.916 1.65 3.917 1.65 states for thess system, computed with the interaction la from Ref.

[8], but without the Coulomb potential.
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TABLE V. Meson masses computed with the Lagrange mestapproximately equal to the mean valueuger
method within the RFT and the RS models. The interaction la frorr\:<\,(pr2+ m2)/(1_v2l)> for the corresponding statBlrer),
Ref.[8] is_ used, but without the Coul_omb potential. The values ofdue to the equivalence between the two models via(E3).

the effective massego and uger are given. Our results are given in Table V. The masses for both
RFT and RS models are computed with the Lagrange mesh
method for the same parameters as in Sec. VIB. The RS
masses are always upper bounds of the RFT masses with

Relativistic flux tube Rotating string

Mass MRFT Mass Mo ; i . o
(GeV) (GeV) (GeV) (GeV) relative differences around by 7% , as in the limiting case of
vanishing angular momentum. We also see jhatr= uo as
nno 135 1.228 0.308 1.289 0.32 expected. We can finally notice that the results of the two
13P, 1.543 0.323 1.581 0.29 models are closer and closer when the mass of the constitu-
1D,  1.825 0.342 1.860 0.32 ent quark increases, because the RFT and the RS model pos-
235, 1.832 0.460 1.960 0.49 sess a common nonrelgtivistic limit: the Schrddinger equa-
PP, 2071 0.498 2155 0.49 tion with a linear potential.
s 15 1507 0.486 1.536 0.49 VIl. CONCLUSIONS
1°P,  1.809 0.523 1.838 0.52 ) )
19D,  2.078 0593 2103 0.56 We have shown in this paper that the Lagrange mesh
2, 2070 0.612 2142 0.62 metho'd can be used to solve.successfully the_ equations of the
5 : ' ' ' relativistic flux tube model in the symmetrical case. The
2P,  2.204 0.647 2.343 0.64 masses obtained are in good agreement with a previous reso-
cc 1S, 3.486 1.555 3.492 1.55 lution in a harmonic oscillator basi8]. But the Lagrange
1P,  3.723 1.594 3.731 1.58 mesh method is more efficient, due to its independence of the
1°D;  3.931 1.625 3.937 1.62 scale parameter used to fit the size of the trial states. More-
233, 3.902 1.631 3.916 1.65 over, a better convergence is reached. This proves the valid-
2p,  4.081 1.661 4094  1.66 ity of our method.

We have also solved the equations of the symmetrical
_ _ rotating string model with the Lagrange mesh method and
[12], some results have been obtained about the equivalenggi, the WKB approximation. The masses computed with
between a spinless Salpeter Hamiltonidgs and a corre-  hese two procedures are very close, showing that the
sponding Hamiltonian with auxiliary fielth: the eigenval- Lagrange mesh method correctly works, and that the WKB

ues ofH, are upper bounds of the eigenvaluestas[17] ST L
with relative differences around 7% for the lowest states. Wea pproximation is efficient here. If we compare the masses

cno i he RET an S equatons educe, resectvel, 171,24 11 [SE0VS(E flx whe and e otaing st
eigenvalues equations for Hamiltoniakkg and H, for a ’ .

vanishing angular momentum. It should be interesting to sefSt §tates, as gxpegteq because th(.:" twolmodels are classically
if there is the same kind of relation between the masses fofduivalent. This point is a last confirmation of the relevance
the RET and RS models whehe 0 of the Lagrange mesh method to solve the relativistic flux

nt_ube equations.

Another result can be expected: once we know an eige
function |¢ro of the RS Hamiltonian for the extremal value
po, We_are able to compute the effective magg
=po(1/V1-y?) for this state. This quantity should be C.S. and F.B. thank the FNRS for financial support.
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