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The Lagrange mesh method is a very accurate and simple procedure to compute eigenvalues and eigenfunc-
tions of nonrelativistic and semirelativistic Hamiltonians. We show here that it can be used successfully to
solve the equations of both the relativistic flux tube model and the rotating string model, in the symmetric case.
Verifications of the convergence of the method are given.
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I. INTRODUCTION

The Lagrange mesh method is a very accurate and simple
procedure to compute eigenvalues and eigenfunctions of a
two-body Schrödinger equationf1–3g. The trial eigenstates
are developed in a basis of well-chosen functions, the
Lagrange functions, and the Hamiltonian matrix elements are
obtained with a Gauss quadrature. This method can be ex-
tended to treat very accurately three-body problems, in
nuclear or atomic physicsf4g. Recently, it has also been suc-
cessfully applied to a two-body spinless Salpeter equation
f5g. The idea of this work is to adapt the Lagrange mesh
method to solve the complicated equations of both the rela-
tivistic flux tube and the rotating string models.

The relativistic flux tubesRFTd is a phenomenological
model describing the mesons. It relies on the assumption that
the quark and the antiquark are connected by a straight color
flux tube carrying both energy and momentum. The quarks
are considered as spinless particles in the original version of
the modelf6–8g. The RFT reproduces the linear Regge tra-
jectories, and reduces to the usual Schrödinger equation with
a linear confinement potential in the nonrelativistic limit. We
will consider here the particular case of mesons composed of
two equal quark masses. The equations of motion of the
symmetric RFT model are given by two coupled nonlinear
equations: one defining the Hamiltonian and the other defin-
ing the orbital angular momentum. These equations depend
on a quark transverse velocity operator and their solutions
will be obtained by the use of an iterative procedure similar
to the one proposed in Ref.f8g.

The rotating string modelsRSd also describes the mesons.
It is derived from the QCD Lagrangian and is characterized
by the fact that it contains auxiliary fieldsf9–11g. The equa-
tions of motion for this model are similar to the equations of
motion of the RFT model. In the symmetric case, it has been
showed that the RS is classically equivalent to the RFT if the
auxiliary fields are correctly eliminatedf12g. This result, ex-
tended recently to the asymmetric casef13g, provides a clear
physical interpretation for the characteristic variables of the
RS model.

The Lagrange mesh method is explained in Sec. II. In
Sec. III, the relativistic flux tube and the rotating string mod-
els are described. Then, it is shown, in Sec. IV, how the
Lagrange mesh method can be applied to solve the equations
of motion of these models. After some remarks, given in Sec.
V, about the numerical and physical parameters, the results
are presented in Sec. VI and the reliability of our numerical
method is checked. Finally, some concluding remarks are
given in Sec. VII.

II. LAGRANGE MESH METHOD

A Lagrange mesh is formed onN mesh pointsxi associ-
ated with an orthonormal set of indefinitely derivable func-
tions f jsxd f1–3g. A Lagrange functionf jsxd vanishes at all
mesh points but one; it satisfies the Lagrange conditions

f jsxid = li
−1/2dij . s1d

The mesh pointsxi, the zeros of a particular polynomial, and
the li are connected with a Gauss quadrature formula

E
a

b

gsxddx< o
k=1

N

lkgsxkd, s2d

used to compute all the integrals over the intervalfa,bg.
As we consider only radial equations, this interval is

f0,`f, leading to a Gauss-Laguerre quadrature. The Gauss
formula s2d is exact whengsxd is a polynomial of degree
2N−1 at most, multiplied by exps−xd. The Lagrange-
Laguerre mesh is then based on the zeros of the Laguerre
polynomial LNsxd of degreeN f1g. An explicit form can be
derived for the corresponding regularized Lagrange func-
tions

f isxd = s− 1dixi
−1/2xsx − xid−1LNsxde−x/2. s3d

To show how these elements can be applied to a physical
problem, let us consider a HamiltonianH=TspW2d+Vsrd,
whereTspW2d is the kinetic term andVsrd a radial potential
s"=c=1d. The calculations are performed with trial statesucl
given by

ucl = o
k=1

N

Ckufkl, s4d

where
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krW ufkl =
fksr/hd
Îhr

Y,msr̂d. s5d

, is the orbital angular momentum quantum number and the
coefficientsCk are linear variational parameters.h is the
scale parameter chosen to adjust the mesh to the domain of
physical interest. We definer =hx, with x a dimensionless
variable.

We have now to compute the Hamiltonian matrix ele-
ments. Using the properties of the Lagrange functions and
the Gauss quadratures2d, the potential matrix is diagonal. Its
elements are

kf iuVsrduf jl < Vshxiddij , s6d

and only involve the value of the potential at the mesh
points. As the matrix elements are computed only approxi-
mately, the variational character of the method cannot be
guaranteed. But the accuracy of the method is preserved
f14g.

The kinetic energy operator is only a function ofpW2. Let
us define the corresponding matrix,

Pij
2 = kf iupW2uf jl. s7d

It is shown in Ref.f3g that, using the Gauss quadrature and
the properties of the Lagrange functions, one obtains

Pij
2 =

1

h2Spr ij
2 +

,s, + 1d
xi

2 dijD , s8d

where

pr ij
2 = Hs− 1di−jsxixjd−1/2sxi + xjdsxi − xjd−2 si Þ jd,

s12xi
2d−1f4 + s4N + 2dxi − xi

2g si = jd.
s9d

Now the kinetic energy matrixTsP2d can be computed with
the following methodf5g

s1d Diagonalization of the matrixP2. If D2 is the corre-
sponding diagonal matrix, we have

P2 = SD2S−1, s10d

whereS is the transformation matrix.
s2d Computation ofTsD2d by taking the functionT of all

diagonal elements ofD2.
s3d Determination of the matrix elementsTij

=kf i uTsP2d u f jl in the Lagrange basis by using the transfor-
mation matrixS

TsP2d = STsD2dS−1. s11d

This procedure can easily be generalized to the case of an
arbitrary functionF of any given matrixM, in order to com-
pute FsMd sprovided the calculation is relevantd. Note that
such a calculation is not exact because the number of
Lagrange functions is finite. However, it has already given
good results in the semirelativistic case, whereTspW2d
=ÎpW2+m2 f5g.

The eigenvalue equation reduces to a system ofN mesh
equations

o
j=1

N

fTij + Vshxiddij − EdijgCj = 0 with Cj = Îhl jushxjd,

s12d

whereusrd is the regularized radial wave function. The co-
efficientsCj provide the values of the radial wave function at
mesh points. But contrary to some other mesh methods, the
wave function is also known everywhere thanks to Eq.s4d.

III. THE MODELS

A. The relativistic flux tube

In the original RFT modelf6g, the meson is composed by
two spinless particles—a quark and an antiquark—which
move being attached with a flux tube. This tube is assumed
to be linear with a uniform constant energy densitya and
carries angular momentum. A tube element has only a trans-
verse velocity. The system rotates in a plane around the cen-
ter of mass, assumed to be stationary. Ifr i is the distance
between theith quark and the center of mass, and if we
defineṙ i =dri /dt the radial velocity of theith quark, then the
quark speed is given byvi

2= ṙ i
2+vi'

2 , wherevi' is its trans-
verse velocity. We also assume that the energy density of the
extremities of the flux tube is modified by a negative con-
stantC/2, in order to take into account possible boundary
effects due to the contact between the tube and the quark.
Further, we consider that the quarks can interact viaVsrd
taking into account a short-range potentialsa one-gluon-
exchange process, for instanced. These two extra terms are
discussed in Ref.f8g. The LagrangianL of the meson is
given by

L = L1 + L2 − Vsrd, s13d

Li = − migi
−1 − aE

0

ri

dri8gi'8
−1 −

C

2
gi'

−1, s14d

where mi is the constituent mass of theith quark, gi =s1
−vi

2d−1/2 andgi'=s1−vi'
2 d−1/2.

In the following, we will only consider the symmetric
case,m1=m2;m. Then r1=r2, and r =2r1, and v1'=v2'

=v'. The corresponding quantized equations of the system
are f6,8g

2Î,s, + 1d
r

= hv'g',Wrj + ahr, fsv'dj + Cv'g', s15d

H = hg',Wrj +
a

2
Hr,

arcsinv'

v'
J + Cg' + Vsrd, s16d

where, is the orbital angular momentum,hA,Bj=AB+BA,
4x2fsxd=arcsinx−xÎ1−x2, Wr =Îpr

2+m2, and

pr
2 ; − s1/rds]2/]r2dr .

The operatorv' commutes neither withr nor with pr opera-
tors f6g. These equations reduce to a spinless Salpeter equa-
tion with the potentialar+Vsrd+C when ,=0, and to a
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Schrödinger equation with the same potential in the nonrel-
ativistic limit. The general casesm1Þm2d is detailed in Ref.
f7g.

B. The rotating string

Starting from the QCD Lagrangian and writing the gauge
invariant qq Green function for confined spinless quarks in
the Feynman-Schwinger representation, one can arrive at the
Nambu-Goto Lagrangian, which describes two quarks with
massesm1 andm2, attached by a string of energy densitya.
With the straight line ansatz and the introduction of auxiliary
fields m1, m2, andn seinbein fieldsd to get rid of the square
roots appearing in this Lagrangian, one can obtain the
Hamiltonianf11g

H =
1

2Fpr
2 + m1

2

m1
+

pr
2 + m2

2

m2
+ m1 + m2 + a2r2E

0

1 db

n

+E
0

1

dbn +
L2

a3r
2G + Vsrd, s17d

where

a3 = m1s1 − zd2 + m2z2 +E
0

1

db sb − zd2n. s18d

The potentialVsrd takes into account interactions not simu-
lated by the rotating string. We do not consider here a con-
tribution coming from a constant potentialC, as in the RFT
model.L=Î,s,+1d andz defines the positionRm of the cen-
ter of mass:Rm=zx1m+s1−zdx2m, wherexim is the coordinate
of the ith quark, depending on the common proper timet.
The string, with coordinatewm, is described by two param-
eters on its worldsheet: one timeliket and one spacelikeb.
Within the straight line ansatz, the string coordinate is given
by wm=b x1m+s1−bdx2m. The auxiliary fieldsm1 andm2 can
be seen as effective masses of the quarks, while the auxiliary
field n can be interpreted as an effective energy density for
the stringf9,11,12g.

We are interested here in the resolution of the symmetrical
case. Whenm1=m2=m, thenz=1/2 andm1=m2=m. Defin-
ing

y =
L

2a3r
, s19d

one can eliminaten by a variation of the Hamiltonian. This
extremal fieldn0 reads

n0 =
ar

Î1 − 4y2sb − 1/2d2
. s20d

By replacingn by n0 in the Hamiltonians17d and the relation
s19d, we obtain the following equations for the symmetrical
rotating stringf11g

Î,s, + 1d
ar2 =

my

ar
+

1

4y2sarcsiny − yÎ1 − y2d, s21d

H =
pr

2 + m2

m
+ m +

ar

y
arcsiny + my2 + Vsrd. s22d

It has been shown in Ref.f12g that the extremal value of
m giving dH /dm=0 is

m0 =Îpr
2 + m2

1 − y2 . s23d

Moreover, the replacement ofm by m0 in Eqs.s21d ands22d
gives exactly the symmetrical RFT equationss15d and s16d,
with y equal tov'. The RS model with all its auxiliary fields
eliminated is thus equivalent to the RFT model in the classi-
cal symmetrical case. This is also true whensm1Þm2d, as
shown in Ref.f13g.

Here, we use the RS model with the auxiliary fieldm not
eliminated, as in Refs.f9–11g. In these papers, the parameter
m is considered as a real parameter and not as an operator.
But, to avoid eventual singularities in the value of this aux-
iliary field when y is classically close to 1, we introduce
explicitly the dependence ofm in y, through the following
substitution

m → r

Î1 − y2
, s24d

wherer is a real number. Such an expression is inspired by
the results23d. As y is of the same nature asv' in the RFT
model, Eqs.s21d and s22d must be correctly symmetrized,
and the quantized equations of the symmetrical rotating
string are thus

Î,s, + 1d
r

= r
y

Î1 − y2
+

a

2
hr, fsydj, s25d

H =
1

2r
hpr

2 + m2,Î1 − y2j + r
1 + y2

Î1 − y2
+

a

2
Hr,

arcsiny

y
J

+ Vsrd, s26d

where 4x2fsxd=arcsinx−xÎ1−x2 like for the RFT model.
A particular solution depends on the value of this param-

eterr. Following Refs.f9,11g, the physical value ofr mini-
mizes the mass of the state. The mean valuekml
=kr /Î1−y2l can be considered as a constituent mass for the
quark, depending on the state. These equations reduce to a
Schrödinger-like equation with the potentialar+Vsrd when
,=0 f12g, and to a true Schrödinger equation with the same
potential in the nonrelativistic limit.

IV. RESOLUTION

A. The relativistic flux tube

The main purpose of our work is the resolution of the
symmetrical flux tube equationss15d and s16d using the
Lagrange mesh method. To do this, we have to compute the
matrix elements of the different operators in the Lagrange
basis. As we consider a radial problem, we will use a Gauss-
Laguerre quadrature. So, the corresponding Lagrange func-
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tions will be given by Eq.s3d. Let us define the different
matrix elements we need to know

Aij =K f iU2Î,s, + 1d
r

U f jL, Bij = kf iur uf jl,

Dij = kf iuWruf jl,

Fij =K f iUarcsinv'

4v'
2 −

Î1 − v'
2

4v'

U f jL, Gij = kf iuv'g'uf jl,

Sij =K f iUarcsinv'

v'

U f jL, Gij = kf iug'uf jl,

Vij = kf iuVsrduf jl. s27d

With these notations, Eqs.s15d and s16d read

A = hG,Dj + ahB,Fj + CG, s28d

H = hG,Dj +
a

2
hB,Sj + CG + V, s29d

where we have used the approximate closure relation,

o
k=1

N

uf ilkf ju < 1, s30d

to compute a product of two matrices.
The matrix elementsAij , Bij , andVij are easy to compute,

thanks to Eq.s6d. Moreover, Eq.s9d gives us an analytical
expression forpr ij

2 , from which we can deduce the matrix
elementsDij by using the procedure described in Sec. II. The
same procedure will allow us to computeFij , Gij , Sij andGij
once the matrix elements ofv' are known. The determina-
tion of these matrix elements can be achieved by an iterative
process, described here

s1d Equations28d can be rewritten as

G =
1

2
hP,D−1j −

C

2
hG,D−1j −

1

2
DGD−1 −

1

2
D−1GD,

s31d

where

P = A − ahB,Fj. s32d

This equation is symmetrized to ensure thatG is Hermitian.
It is worth noting thatP=PsGd sinceF=FsGd. Starting from
an known matrixGk at thekth step,Pk can be computed and
we obtain a new matrixG8k with Eq. s31d.

s2d This iterative process would diverge if we choose
Gk+1=G8k. So, we introduce a new parametere,1 and de-
fine Gk+1=eG8k+s1−edGk.

s3d At each stepk, theN eigenvalueshv'i
skdj of the operator

v' are computed. The iteration procedure ends when

1

N
o
i=1

N Uv'i
sk+1d − v'i

skd

v'i
sk+1d U , h, s33d

whereh is a fixed tolerance.

Once we have reached the convergence forG, we are able
to computeS andG, which are now seen as functions of the
matrix G rather than the matrix elements of the operatorv'.
The Hamiltonian can then be computed and diagonalized.

Actually, the final matrixG is practically independent of
the initial oneG0. However, the faster way to reach the con-
vergence is to develop Eq.s15d at the first order inv' and to
choose the matrixG given by this development. At the first
order,v'g'<v', and

G0 < Î,s, + 1dS1

2
hB,Dj +

aB2

6
+

C

2
1D−1

. s34d

Let us note that a relevant starting matrix is obtained even if
m=0.

B. Rotating string

1. Lagrange mesh method

The resolution of the RS with the Lagrange mesh method
is similar to that of the RFT. Indeed, using the previous defi-
nitions s27d with y instead ofv', and defining

Qij = k f iuÎ1 − y2uf jl, Yij =K f iU 1 + y2

Î1 − y2U f jL ,

Eij = kf iupr
2 + m2uf jl, s35d

Eqs.s25d and s26d and are given by

G =
1

2r
sA − ahB,Fjd, s36d

H =
1

2r
hE,Qj + rY +

a

2
hB,Sj + V. s37d

Like for the RFT, we need to compute the matrix of the
operatory to completely know the Hamiltonian. We will do
this by an iterative process onG given directly by Eq.s36d,
with an initial value, obtained after a first order development,
given by

G0 = Î,s, + 1dSrB +
a

6
B2D−1

. s38d

The last step in the resolution of the RS equations is always
to find the value of the real numberr realizing the minimum
mass of a particular state. This extremal value is different for
each state.

2. WKB method

Contrary to the case of the RFT, the operatorpr
2 appears

only in the equation defining the Hamiltonian for the RS.
This makes possible a solution of Eqs.s25d ands26d and by
a WKB method. Partial solutions of the RFT equations
within this method are described in Ref.f15g.

First, let us examine the case,=0. The RS equations
reduce then to a spinless Salpeter equation of the formsr
=m sincey=0d
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H =
pW2 + m2

r
+ r + ar + Vsrd, s39d

where

pW2 = pr
2 +

L2

r2 . s40d

In the WKB method,L= , +1/2. ConsequentlyL2=1/4
here, and we obtain

pr
2 = rM − r2 − m2 − rar −

1

4r2 − rVsrd, s41d

whereM is the meson mass. We have then to computer+ and
r− the two physical zeros of the classical quantitypr

2. Finally,
the resolution of the Bohr-Sommerfeld condition

E
r−

r+

pr dr = psn + 1
2d , s42d

followed by a minimization ofM with respect to the param-
eter r gives the mass of the state whose quantum numbers
are, andn.

When ,Þ0, the WKB formulation of the classical RS
equationss21d and s22d, with the substitutions24d, reads

, + 1
2

ar2 =
ry

arÎ1 − y2
+

1

4y2sarcsiny − yÎ1 − y2d, s43d

M =
1

r
spr

2 + m2dÎ1 − y2 + r
1 + y2

Î1 − y2
+

ar

y
arcsiny + Vsrd.

s44d

The first one implicitly defines a functiony= ỹsr , , ,rd,
which can be numerically computed. We can then formally
write

pr
2 =

r

Î1 − ỹ2SM − Vsrd −
ar

ỹ
arcsinỹD − r21 + ỹ2

1 − ỹ2 − m2.

s45d

The rest of the resolution is now identical to the previous
case,=0.

V. SET OF PARAMETERS

A. Physical parameters

In this paper, we are mainly interested in the capacity of
our method to give accurate solutions of the coupled equa-
tions for both RFT and RS models. But, in order to compare
our results with previous studies and to use our method with
physical parameters in interesting ranges, we will use the
values of physical quantities from the models Ia and Ic de-
veloped in Ref.f8g ssee Table Id. Both models possess a
Coulomb term with three values of the strength, depending
on the quark content of the meson:khl for heavy-light sys-
tem, khh for heavy-heavy system, andkll for light-light sys-
tem slight quark:u,d,s; heavy quark:c,bd.

B. The scale parameter

The Lagrange mesh method provides us a direct picture of
the wave function at the mesh points. The best results are
thus obtained when the mesh covers the main part of the
wave function and the last mesh point is located in the
asymptotic tail. That is why we are interested in an adequate
determination of the scale parameterh. Since the method is
not variational, no extremum of the mass can be expected for
a defined value ofh f5g. A good value for this quantity is
given by h=ra/xN, where xN is Nth zero of the Laguerre
polynomial sthe last point of the meshd, and ra represents a
distance for which the asymptotic tail of the wave function is
well defined. IfxN is well known, ra is not. We show here
how such a quantity can be estimated.

A typical evolution of the computed masses for different
values ofh is presented in Fig. 1. The existence of plateaus
shows that the method does not require the knowledge of
precise values of the scale parameter. A simple estimation
will be sufficient, even to obtain accurate results.

For given quantum numbers, a system of two massless
quarks is expected to have the maximal spatial extension,

TABLE I. Two sets of physical parameters for the RFT and the
RS models, from Ref.f8g sn=u or dd.

Ia Ic

mn sGeVd 0 0.233

ms sGeVd 0.317 0.416

mc sGeVd 1.456 1.658

a sGeV2d 0.151 0.169

C sGeVd 0 −2mn

kll 1.016 0.539

khl 0.698 0.467

khh 0.544 0.500

FIG. 1. Typical evolution of meson masses for the RFT model
with the scale parameterh: 1S, 1P, and 2S states for the isospin 1
mesons, computed with the parameters Ia from Ref.f8g. Formula
s53d gives h=0.21 GeV−1 for the 1S state; this value is correctly
located in the plateau.
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and so it could give an upper bound of the parameterh. First,
we analyze the problem for the RS equations when,=0.
These equations reduce then to a spinless Salpeter Hamil-
tonian, which reads

HA =
pW2

r
+ r + ar. s46d

We fix Vsrd=0, since the asymptotic behavior is controlled
by the confinement. The solutions have the following ana-
lytical forms sn=0,1, …d f12g

En0srd = Sa2

r
D1/3

s− snd + r, s47d

un0srd = srad1/6Ai „srad1/3r + sn…

uAi 8ssndu
, s48d

where Aissd is the Airy function andsn its nth zero, given by
the approximate formulaf16g

sn < − F3p

2
Sn +

3

4
DG2/3

. s49d

Replacingr by its extremal valuern0,

rn0 = ÎaS− sn

3
D3/4

, s50d

we have

un0srd ~ AiXÎaS− sn

3
D1/4

r + snC . s51d

Whens<5, Aissd is about 0.02% of its maximal value. Con-
sequently, a good estimation ofra is given by

ÎaS− sn

3
D1/4

ra + sn = 5. s52d

At this point, we are able to compute a “physical” value
for h when ,=0. The extension of the wave function in-
creases with the angular momentum. The simplest way to
simulate such an increase is to computera with the relation

ÎaS− sn+,

3
D1/4

ra + sn+, = 5. s53d

This crude estimation ofh is satisfactory because it is always
located in the plateau. Moreover, we will use it in both RFT
and RS methods, because of the classical equivalence be-
tween these two theories.

C. Numerical parameters

The accuracy of the solutions depends mainly on two pa-
rameters: the numberN of mesh pointssbasis statesd and the
value of the toleranceh on the eigenvalues of the operator
v'. For instance, a relative error on meson masses around
10−5 can be reached withNù30 andhø10−6. The accuracy
can be increased by using greater values ofN and smaller
values ofh.

If the value of the mixing parameterse is too high, the
iterative process diverges. The best value ofe is chosen as
the largest value for which the process converges. It depends
on the case considered, as shown in Table II. It clearly ap-
pears that the iterative process does not converge easily with
the RFT equations, especially when the quarks are massless.
About 700 iterations are needed in this case, and 400 when
m/Îa*1. However, the RS solutions converge faster, and
one can reach the convergence after about only 40 iterations.

VI. RESULTS

A. Relativistic flux tube

The Lagrange mesh method is not variational. But, in
practice for a sufficiently high number of basis states, the
method is often variationalseigenvalues computed are all
upper boundsd or antivariationalseigenvalues computed are
all lower boundsd f5g.

We have computed with the Lagrange mesh method the
solutions of the RFT equations for models Ia and Ic from
Ref. f8g ssee Table Id. All the masses are computed withN
=30, h=10−6, the scale parameterh is estimated thanks to
Eq. s53d, and the parametere is taken from Table II. Meson
masses are presented in Table III with the corresponding
ones computed with the method developed in Ref.f8g, rely-
ing on a harmonic oscillator basis. Experimental data are
given in order to show that the parameters used are physi-
cally relevant.

The results of both methods are compatible. Nevertheless,
the masses computed with the Lagrange mesh method are
always smaller than the masses computed with the harmonic
oscillator method, although the Lagrange mesh method is not
variational. We obtain similar results when both methods are
used to solve ordinary Schrödinger and spinless Salpeter
equations. We have thus strong confidence in our new
method to provide a better convergence of the results. The
improvement is especially important for light quark masses.
Differences between the two methods vanish when the quark
mass increases.

It is worth noting that the masses computed with method
of Ref. f8g are strongly dependent of the values chosen for
the oscillator length. So a supplementary minimization on
this parameter, for each state, is necessary to obtain the op-
timal value of a mass. This is not necessary with the
Lagrange mesh method since it is nearly independent of the
scale parameterssee Fig. 1d.

The small differences between the masses obtained with
the Lagrange mesh method and the harmonic oscillator
method are a strong indication that our method works well.

TABLE II. Approximate optimal values for the parametere in
different cases.

e

m/Îa RFT RS

<0 0.005 0.1

*1 0.01 0.1
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But we want another test. It will be given by the study of the
RS model.

B. Rotating string

Solutions of the RS equations computed with the
Lagrange mesh methodsnumerical parameters as in Sec.
VI A d and the WKB approximation are presented in Table
IV. The masses are obtained using the set Ia of parameters
ssee Table Id, for a pure string without Coulomb-like poten-
tial.

The two methods to solve the RS equations lead to very
close results. This shows that the semiclassical approxima-
tion is efficient in this case, but also that the Lagrange mesh
method works correctly. Figure 2 shows the existence of a

minimal mass for a particular valuer0 of the parameterr in
the RS equations. In our calculations,r0 has been determined
to the nearest 10 MeV, and is the same in the two methods
with that precision. An accuracy below 1 MeV is then
reached for the masses.

C. Comparison between RFT and RS

If the RS model is classically equivalent to the RFT
model once the auxiliary fields are correctly eliminated, the
two models should not give the same results when a real
parameterr is kept in the RS equations. In a previous study

TABLE III. Meson masses for the RFT model, with two sets Ia and Ic of parameters from Ref.f8g,
computed using the Lagrange mesh methodsLag.d and a previous technique relying on an harmonic oscillator
basissHOd f8g. The experimental massessExpt.d are given, without error, for information.

MasssGevd

sn+1d2S+1LJ Expt. HO sIad Lag.sIad HO sIcd Lag. sIcd

nn 13S1 0.771 0.781 0.762 0.774 0.773

13S1 1.318 1.310 1.300 1.320 1.319

13D3 1.691 1.654 1.643 1.689 1.676

23S1 1.465 1.450 1.415 1.427 1.424

23P2 1.810 1.841 1.832 1.797 1.794

ss 13S1 1.019 0.988 0.968 1.010 1.010

13P2 1.525 1.540 1.534 1.517 1.515

13D1 1.854 1.881 1.877 1.867 1.865

23S1 1.680 1.671 1.641 1.644 1.641

23P2 2.011 2.053 2.047 1.994 1.991

cc 13S1 3.097 3.131 3.130 3.116 3.115

13P2 3.556 3.528 3.527 3.542 3.542

13D3 3.770 3.788 3.788 3.820 3.820

23S1 3.686 3.666 3.663 3.664 3.661

23D1 4.159 4.128 4.128 4.165 4.164

TABLE IV. Meson masses for the RS model computed with the
Lagrange mesh method and the WKB approximation. The interac-
tion Ia from Ref.f8g is used, but without the Coulomb potential.
The extremal valuer0, to the nearest 10 MeV, of the parameterr is
given in both cases.

Lagrange mesh WKB

Mass
sGeVd

r0

sGeVd
Mass
sGeVd

r0

sGeVd

nn 13S1 1.289 0.32 1.294 0.32

13P2 1.581 0.16 1.589 0.16

23S1 1.960 0.49 1.963 0.49

cc 13S1 3.492 1.55 3.493 1.55

13P2 3.731 1.52 3.730 1.51

23S1 3.916 1.65 3.917 1.65

FIG. 2. Meson masses for the RS model, computed with the
Lagrange mesh method, versus the parameterr: 1S, 1P, and 1D
states for thess system, computed with the interaction Ia from Ref.
f8g, but without the Coulomb potential.
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f12g, some results have been obtained about the equivalence
between a spinless Salpeter HamiltonianHSS and a corre-
sponding Hamiltonian with auxiliary fieldHA: the eigenval-
ues ofHA are upper bounds of the eigenvalues ofHSS f17g
with relative differences around 7% for the lowest states. We
know that the RFT and RS equations reduce, respectively, to
eigenvalues equations for HamiltoniansHSS and HA for a
vanishing angular momentum. It should be interesting to see
if there is the same kind of relation between the masses for
the RFT and RS models when,Þ0.

Another result can be expected: once we know an eigen-
function ucRSl of the RS Hamiltonian for the extremal value
r0, we are able to compute the effective massm0
=r0k1/Î1−y2 l for this state. This quantity should be

approximately equal to the mean valuemRFT

=kÎspr
2+m2d / s1−v'

2 dl for the corresponding stateucRFTl,
due to the equivalence between the two models via Eq.s23d.

Our results are given in Table V. The masses for both
RFT and RS models are computed with the Lagrange mesh
method for the same parameters as in Sec. VI B. The RS
masses are always upper bounds of the RFT masses with
relative differences around by 7% , as in the limiting case of
vanishing angular momentum. We also see thatmRFT<m0 as
expected. We can finally notice that the results of the two
models are closer and closer when the mass of the constitu-
ent quark increases, because the RFT and the RS model pos-
sess a common nonrelativistic limit: the Schrödinger equa-
tion with a linear potential.

VII. CONCLUSIONS

We have shown in this paper that the Lagrange mesh
method can be used to solve successfully the equations of the
relativistic flux tube model in the symmetrical case. The
masses obtained are in good agreement with a previous reso-
lution in a harmonic oscillator basisf8g. But the Lagrange
mesh method is more efficient, due to its independence of the
scale parameter used to fit the size of the trial states. More-
over, a better convergence is reached. This proves the valid-
ity of our method.

We have also solved the equations of the symmetrical
rotating string model with the Lagrange mesh method and
with the WKB approximation. The masses computed with
these two procedures are very close, showing that the
Lagrange mesh method correctly works, and that the WKB
approximation is efficient here. If we compare the masses
given by the relativistic flux tube and the rotating string
models, we find relative differences around 7% for the low-
est states, as expected because the two models are classically
equivalent. This point is a last confirmation of the relevance
of the Lagrange mesh method to solve the relativistic flux
tube equations.
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